11 July 2024
Savannah Resources
Plc
(AIM: SAV, FWB: SAV and SWB:
SAV) ('Savannah', or the
'Company')
Further results from DFS
Phase 1 drilling confirm resource expansion
potential
Savannah Resources plc ('Savannah'
or the 'Company'), the resource development company, is pleased to
announce further results from the first phase of the current two
stage DFS drilling programme at the Barroso Lithium Project ('the
Project') located in northern Portugal (Figure 1). The Project,
currently with a 28Mt @ 1.05% Li2O Mineral Resource, is
Europe's most significant spodumene lithium deposit.
Highlights:
·
Savannah reports significant lithium assays which
it has received from a further 8 diamond drill holes (4 at
Pinheiro, 3 at NOA, 1 at Reservatório) undertaken for geotechnical,
metallurgical, and resource purposes as part of the Phase 1 DFS
drill programme.
·
At Pinheiro, where 2 pegmatite bodies (the
Eastern and the Western), have been previously identified, the
results from metallurgical and resource diamond drilling, have
confirmed the tenure of lithium mineralisation from Reverse
Circulation ('RC') drilling (see 12 March RNS) and highlight the
potential for the expansion of the resource.
·
Significant lithium mineralisation intersections
at the Western pegmatite at Pinheiro include:
o 36.5m @ 1.24% Li2O from 33.5m in
24PNRDD003
o 16.48m @ 1.22% Li2O from 41.02m in
24PNRDD004
o 14.08m @ 1.04% Li2O from 9.32m in
24PNRDD007
o 16.43m @ 1.57% Li2O
from 18.57m and 11m @ 0.79% Li2O from
61m in 24PNRDD008 (vertical hole
not true widths)
·
The diamond holes at Pinheiro also show that mineralisation
continues to the north on the Western Pegmatite, outlining the
greater resource potential, to be tested in the second phase of
drilling.
·
At NOA two
metallurgical holes that twinned previous RC drilling and a
geotechnical hole confirm the continuity of lithium
mineralisation.
·
Significant lithium mineralisation intersections
at NOA include:
o 9.86m @ 1.3% Li2O from 49.14m in 24NOADD011
(twinned holes)
o 5.45m @ 1.25% Li2O from 0.35m in 24NOADD010
(twinned holes)
and 21m @ 1.26% Li2O
from 31m
·
At Reservatório a diamond hole drilled for
geotechnical purposes intersected 53.1m of pegmatite and aplite and
shows that the Reservatório
pegmatite continues to be mineralised at depth.
·
Significant lithium mineralised intersections at
Reservatório
include:
o 7m @
1.16% Li2O from 143m, 5.7m @
0.81% Li2O from 172m and 6.5m @
1.22% Li2O from 180.5m in 24RESDD013
·
Note that the geotechnical holes were designed to
gain structural information about the designed pit walls and the
pegmatite intercepts were incidental to that.
·
Next steps: Once the remaining phase 1 assays have
been received, analysed and any further significant assays
reported, planning for phase 2 of the
programme can then be completed.
Savannah's Technical Director, Dale Ferguson
said, "Though the resource drilling
of our Phase 1 DFS campaign finished in February, we still have
assays coming back from some diamond drillholes which were
completed towards the end of the campaign, including from
geotechnical and metallurgical holes. The results we have announced
today, which come from holes at Pinheiro, NOA and Reservatório, all
confirm the dual potential, highlighted by earlier results, for
these orebodies to contain areas of higher-grade mineralisation
than previously identified and to extend in multiple
directions.
"In terms of next steps regarding
the ongoing drilling campaign, any further assays of note from
Phase 1 will be reported once received and we shall complete our
planning of phase 2. Many other workstreams relating to the DFS are
also being progressed, supported by the recent financing received
from our new strategic partner, AMG Critical Materials N.V ('AMG').
We will provide further details on these fronts in due
course.
"The technical team and I are
expecting another busy period during the second half of year as we
look to move forward with all our key deliverables and begin to
work more closely with AMG on technical matters, as well as the
highly experienced consultants we are using for the Project's DFS,
remaining environmental licencing work, and the associated access
road."
Further Information
As previously announced, Savannah
has completed the first of two phases of drilling at the Barroso
Lithium Project as part of the ongoing Definitive Feasibility Study
(DFS) (Figure 1). The programme consisted of drilling for resource,
metallurgical and geotechnical purposes using primarily RC with
some diamond drilling for the resource work and diamond drilling
for the metallurgical and geotechnical requirements. A total of
6154m was drilled overall in phase one including water bore
drilling. All the core from phase 1 has now been logged with the
majority of assays now received from third party laboratories.
Significant assays, including those reported in this RNS, have been
announced. Any remaining significant assays will be announced once
received.
Figure 1. Barroso Lithium Project
summary map showing deposits and drill hole locations.
Pinheiro
At Pinheiro, two metallurgical
diamond holes were drilled across the Western Pegmatite in the
vicinity of recent RC and water bore drilling that returned
extensive intercepts of lithium mineralisation (Figure 2) (see RNS
12 March 2024). The diamond drill holes were able to be drilled
near perpendicular to the dip of the pegmatite giving a good
indication of the true width of mineralisation in the Western
Pegmatite and confirming the tenure outlined in the previous
drilling. Results of 36.5m at 1.24% Li2O from 33.5m in
24PNRDD003 and 16.48m at 1.22% Li2O from 41.02m in
24PNRDD004 have confirmed the potential shown by previous RC
drilling that the Western Pegmatite appears to increase in width
and grade at depth.
In addition, two further diamond
holes were drilled for exploration purposes at the known northern
extent of the Western Pegmatite and continued to intersect the
pegmatite, proving its continuity towards the north. Hole
24PNRDD007, which was drilled across strike indicated a true width
at surface of 15m. Hole 24PNRDD008 was drilled vertically due to
rig access issues and followed the pegmatite at a shallow angle to
the dip, intersecting the pegmatite for approximately 65m. Although
the intercept does not reflect the true width of the pegmatite,
when viewed in cross section it is apparent that the pegmatite is
increasing in width at depth (Figures 3 and 4).
Figure 2. Location of Phase 1
diamond drilling at Pinheiro with significant intercepts from
assays received to date.
Figure 3. Cross section 1 of
Pinheiro deposit.
Figure 4. Cross section 2 of
Pinheiro deposit.
NOA
At NOA, results have been received
from two metallurgical drill holes and one geotechnical drill hole
that intersected the pegmatite. Drill holes 24NOADD010 and
24NOADD011 were drilled as twins of previous RC holes (18NOARC012
and 17NOARC004 respectively) to get representative core for
metallurgical testing. The results were as expected with similar
widths and grades to the previous drilling and are considered
representative of the ore that will be processed during mining. The
third diamond hole 24NOADD007 was a geotechnical hole drilled at
the western end of the main pegmatite and results were as expected
(Figure 5).
Figure 5. Location of Phase 1
diamond drilling at NOA with significant intercepts from assays
received to date.
Reservatório
At Reservatório a diamond drill hole
was drilled for geotechnical purposes to intersect the base of the
designed pit to gain structural information. The hole intersected
53.1m of pegmatite/aplite, which was a much greater thickness than
has been modelled previously at this location. The assay results
that were received indicate two mineralised zones, one along the
hanging wall and the other along the footwall of the body (Hanging
wall: 7m at 1.16% Li2O from 143m and Footwall: 6.5m at
1.22% Li2O from 180.5m). The results are still being
interpreted but possibly indicate the coalition of a deeper
pegmatite with the main Reservatório pegmatite (Figures 6 and
7).
Figure 6. Location of Phase 1
diamond drilling at Reservatório with significant intercepts from
assays results.
Figure 7. Cross section 1 of
Reservatório deposit.
Next steps
Planning is currently underway for
Phase 2 of the DFS drilling programme with the results from Phase 1
being used to fine tune the planned holes to infill and extend the
known lithium mineralisation.
Competent Person and Regulatory Information
The information in this announcement
that relates to exploration results is based upon information
compiled by Mr Dale Ferguson, Technical Director of Savannah
Resources Limited. Mr Ferguson is a Member of the Australasian
Institute of Mining and Metallurgy (AusIMM) and has sufficient
experience which is relevant to the style of mineralisation and
type of deposit under consideration and to the activity which he is
undertaking to qualify as a Competent Person as defined in the
December 2012 edition of the "Australasian Code for Reporting of
Exploration Results, Mineral Resources and Ore Reserves" (JORC
Code). Mr Ferguson consents to the inclusion in the report of the
matters based upon the information in the form and context in which
it appears.
Regulatory Information
This Announcement contains inside
information for the purposes of the UK version of the market abuse
regulation (EU No. 596/2014) as it forms part of United Kingdom
domestic law by virtue of the European Union (Withdrawal) Act 2018
("UK MAR").
Savannah - Enabling Europe's energy
transition.
**ENDS**
Follow @SavannahRes on X (Formerly
known as Twitter)
Follow
Savannah Resources on LinkedIn
For further information please
visit www.savannahresources.com
or contact:
Savannah Resources PLC
Emanuel Proença, CEO
|
Tel: +44 20 7117 2489
|
SP
Angel Corporate Finance LLP (Nominated Advisor & Joint
Broker)
David Hignell/ Charlie Bouverat
(Corporate Finance)
Grant Barker/Abigail Wayne (Sales
& Broking)
|
Tel: +44 20 3470 0470
|
SCP
Resource Finance (Joint Broker)
|
Tel: +44 204 548 1765
|
Filipe Martins/Chris
Tonkin
|
|
|
|
Camarco (Financial PR)
Gordon Poole/ Emily Hall / Nuthara
Bandara
|
Tel: +44 20 3757 4980
|
|
|
LPM
(Portugal Media Relations)
Herminio Santos/ Jorge Coelho /
Margarida Pinheiro
|
Tel: +351 218 508 110
|
About Savannah
Savannah Resources is a mineral
resource development company and the sole owner of the Barroso
Lithium Project in northern Portugal, the largest battery grade
spodumene lithium resource outlined to date in Europe.
Through the Barroso Lithium Project
(the 'Project'), Savannah will help Portugal to play an important
role in providing a long-term, locally sourced, lithium raw
material supply for Europe's rapidly developing lithium battery
value chain. After the Environmental Licence was granted in May
2023 and the Scoping Study confirmed the economic potential of the
Project in June 2023, production is now targeted and on track to
begin in 2026. At that stage, Savannah will start producing enough
lithium (contained in c.190,000tpa of spodumene concentrate) for
approximately half a million vehicle battery packs per year, equal
to a significant portion of the European Commission's Critical Raw
Material Act goal of a minimum 10% of European endogenous lithium
production set for 2030. Savannah is focused on the responsible
development and operation of the Barroso Lithium Project so that
its impact on the environment is minimised and the socio-economic
benefits that it can bring to all its stakeholders are
maximised.
In June 2024, Savannah entered a
strategic partnership with AMG Critical Materials N.V., the global
critical materials business and established lithium market
participant. AMG has invested GBP 16m in Savannah in exchange for a
15.8% stake in the Company and a 5 year, 45ktpa spodumene offtake
agreement. This investment alongside existing cash provides
Savannah with the finance required to take the Project to a Final
Investment Decision point. AMG can increase its offtake to 90ktpa
for 10 years if it provides an acceptable full project funding
solution for the Project's construction.
The Company is listed and regulated
on the London Stock Exchange's Alternative Investment Market (AIM)
and the Company's ordinary shares are also available on the
Quotation Board of the Frankfurt Stock Exchange (FWB) under the
symbol FWB: SAV, and the Börse Stuttgart (SWB) under the ticker
"SAV".
APPENDIX 1 - Drill hole locations of Phase 1 RC and Diamond Resource
Holes.
Hole_ID
|
Prospect
|
Hole Type
|
Total
Depth (m)
|
East
(mE)
|
North
(mN)
|
Elevation
(mASL)
|
Dip
|
Azimuth
|
23NOARC026
|
NOA
|
RC
|
111
|
599104
|
4609510
|
677
|
-60
|
198
|
23NOARC027
|
NOA
|
RC
|
40
|
599015
|
4609572
|
689
|
-60
|
198
|
23NOARC028
|
NOA
|
RC
|
40
|
599047
|
4609565
|
692
|
-60
|
198
|
23NOARC029
|
NOA
|
RC
|
42
|
599025
|
4609498
|
693
|
-60
|
200
|
23NOARC030
|
NOA
|
RC
|
35
|
598992
|
4609575
|
686
|
-60
|
200
|
23NOARC031
|
NOA
|
RC
|
30
|
598988
|
4609559
|
687
|
-60
|
200
|
23NOARC032
|
NOA
|
RC
|
123
|
599086
|
4609555
|
691
|
-60
|
200
|
23NOARC033
|
NOA
|
RC
|
20
|
598985
|
4609540
|
688
|
-60
|
200
|
23NOARC034
|
NOA
|
RC
|
40
|
598894
|
4609584
|
687
|
-60
|
200
|
23NOARC035
|
NOA
|
RC
|
43
|
598900
|
4609610
|
683
|
-60
|
200
|
23NOARC036
|
NOA
|
RC
|
35
|
598916
|
4609606
|
679
|
-60
|
200
|
23NOARC037
|
NOA
|
RC
|
67
|
598916
|
4609589
|
678
|
-60
|
200
|
23NOARC038
|
NOA
|
RC
|
35
|
599205
|
4609406
|
691
|
-60
|
200
|
23NOARC039
|
NOA
|
RC
|
61
|
599238
|
4609389
|
687
|
-60
|
200
|
23NOARC040
|
NOA
|
RC
|
45
|
599174
|
4609436
|
687
|
-60
|
200
|
23NOARC041
|
NOA
|
RC
|
60
|
599135
|
4609470
|
681
|
-60
|
200
|
23NOARC042
|
NOA
|
RC
|
85
|
599190
|
4609491
|
673
|
-60
|
200
|
23NOARC043
|
NOA
|
RC
|
130
|
599074
|
4609531
|
689
|
-60
|
200
|
23NOARC044
|
NOA
|
RC
|
35
|
599100
|
4609457
|
674
|
-60
|
200
|
23NOARC045
|
NOA
|
RC
|
35
|
599112
|
4609440
|
674
|
-60
|
200
|
23NOARC046
|
NOA
|
RC
|
35
|
598943
|
4609589
|
678
|
-60
|
200
|
23NOARC047
|
NOA
|
RC
|
25
|
598938
|
4609573
|
679
|
-60
|
200
|
23NOARC048
|
NOA
|
RC
|
105
|
599157
|
4609520
|
666
|
-60
|
200
|
24NOADD006
|
NOA
|
DD
|
80
|
599126
|
4609500
|
674
|
-70
|
0
|
24NOADD007
|
NOA
|
DD
|
70.11
|
599053
|
4609476
|
682
|
-50
|
265
|
24NOADD008
|
NOA
|
DD
|
74.25
|
599118
|
4609438
|
674
|
-60
|
200
|
24NOADD009
|
NOA
|
DD
|
100.25
|
599208
|
4609467
|
680
|
-50
|
135
|
24NOADD010
|
NOA
|
DD
|
60.15
|
599247
|
4609409
|
689
|
-60
|
202
|
24NOADD011
|
NOA
|
DD
|
65.55
|
599159
|
4609483
|
677
|
-60
|
203
|
24PNRRC020
|
Pinheiro
|
RC
|
110
|
601380
|
4606960
|
542
|
-60
|
270
|
24PNRRC021
|
Pinheiro
|
RC
|
113
|
601402
|
4606933
|
543
|
-60
|
220
|
24PNRRC022
|
Pinheiro
|
RC
|
100
|
601401
|
4606936
|
543
|
-60
|
265
|
24PNRRC023
|
Pinheiro
|
RC
|
138
|
601408
|
4606892
|
547
|
-60
|
190
|
24PNRRC024
|
Pinheiro
|
RC
|
144
|
601406
|
4606893
|
547
|
-65
|
220
|
24PNRRC025
|
Pinheiro
|
RC
|
100
|
601402
|
4606932
|
543
|
-55
|
290
|
24PNRDD003
|
Pinheiro
|
DD
|
101.15
|
601354
|
4606886
|
537
|
-60
|
90
|
24PNRDD004
|
Pinheiro
|
DD
|
80
|
601355
|
4606895
|
538
|
-60
|
60
|
24PNRDD005
|
Pinheiro
|
DD
|
70
|
601362
|
4606909
|
539
|
-60
|
248
|
24PNRDD006
|
Pinheiro
|
DD
|
60.1
|
601358
|
4606956
|
543
|
-50
|
20
|
24PNRDD007
|
Pinheiro
|
DD
|
50
|
601350
|
4606934
|
541
|
-60
|
70
|
24PNRDD008
|
Pinheiro
|
DD
|
112.7
|
601349
|
4606935
|
541
|
-90
|
0
|
24PNRWB001
|
Pinheiro
|
PERC
|
130
|
601355
|
4606893
|
538
|
-90
|
0
|
24PNRWB002
|
Pinheiro
|
PERC
|
130
|
601360
|
4606908
|
539
|
-90
|
0
|
23RESRC038
|
Reservatório
|
RC
|
207
|
599510
|
4609249
|
655
|
-90
|
0
|
23RESRC042
|
Reservatório
|
RC
|
12
|
599650
|
4609094
|
594
|
-60
|
150
|
23RESRC043
|
Reservatório
|
RC
|
9
|
599687
|
4609109
|
591
|
-60
|
150
|
23RESRC044
|
Reservatório
|
RC
|
18
|
599618
|
4609011
|
599
|
-60
|
150
|
23RESRC045
|
Reservatório
|
RC
|
130
|
599679
|
4609231
|
619
|
-90
|
0
|
23RESDD009
|
Reservatório
|
DD
|
90.5
|
599764
|
4609176
|
611
|
-60
|
150
|
23RESRC039
|
Reservatório
|
RCDD
|
193.9
|
599511
|
4609246
|
655
|
-70
|
150
|
23RESRC040
|
Reservatório
|
RCDD
|
192.6
|
599557
|
4609245
|
649
|
-90
|
0
|
23RESRC041
|
Reservatório
|
RCDD
|
175
|
599559
|
4609241
|
649
|
-70
|
150
|
24RESDD010
|
Reservatório
|
DD
|
40
|
599688
|
4609110
|
590
|
-60
|
150
|
24RESDD011
|
Reservatório
|
DD
|
50
|
599617
|
4609016
|
599
|
-60
|
150
|
24RESDD012
|
Reservatório
|
DD
|
50
|
599661
|
4609070
|
590
|
-60
|
150
|
24RESDD013
|
Reservatório
|
DD
|
200.2
|
599609
|
4609239
|
636
|
-70
|
147
|
24RESDD014
|
Reservatório
|
DD
|
140.05
|
599543
|
4609235
|
650
|
-50
|
328
|
23RESWB001
|
Reservatório
|
PERC
|
170
|
599376
|
4609275
|
664
|
-90
|
0
|
23RESWB002
|
Reservatório
|
PERC
|
170
|
599334
|
4609301
|
663
|
-90
|
0
|
23RESWB003
|
Reservatório
|
PERC
|
169
|
599339
|
4609284
|
667
|
-90
|
0
|
24GRARC132
|
Grandão
|
RC
|
90
|
601743
|
4608177
|
521
|
-90
|
0
|
24GRARC133
|
Grandão
|
RC
|
39
|
601919
|
4607864
|
563
|
-90
|
0
|
24GRADD047
|
Grandão
|
DD
|
79.8
|
601827
|
4607837
|
547
|
-75
|
80
|
23GRAWB003
|
Grandão
|
PERC
|
240
|
601864
|
4608300
|
545
|
-90
|
0
|
23GRAWB004
|
Grandão
|
PERC
|
180
|
601861
|
4608290
|
546
|
-90
|
0
|
23GRAWB005
|
Grandão
|
PERC
|
120
|
601742
|
4608177
|
521
|
-90
|
0
|
23GRAWB006
|
Grandão
|
PERC
|
202
|
601724
|
4608186
|
518
|
-90
|
0
|
APPENDIX 2 -Summary of Significant
Intercepts from the diamond drilling using a 0.5% Li2O
Cutoff.
Hole_ID
|
Prospect
|
From (m)
|
To (m)
|
Interval
(m)
|
Grade
Li2O%
|
24PNRDD003
|
Pinheiro
|
33.5
|
70
|
36.5
|
1.24
|
24PNRDD004
|
Pinheiro
|
41.02
|
57.5
|
16.48
|
1.22
|
24PNRDD007
|
Pinheiro
|
9.32
|
23.4
|
14.08
|
1.04
|
24PNRDD008
|
Pinheiro
|
18.57
|
35
|
16.43
|
1.57
|
and
|
61
|
72
|
11
|
0.79
|
24NOADD007
|
NOA
|
20.63
|
26.89
|
6.26
|
0.98
|
24NOADD011
|
NOA
|
49.14
|
59
|
9.86
|
1.3
|
24NOADD010
|
NOA
|
0.35
|
5.8
|
5.45
|
1.25
|
and
|
31
|
52
|
21
|
1.26
|
24RESDD013
|
Reservatório
|
143
|
150
|
7
|
1.16
|
and
|
172
|
177.7
|
5.7
|
0.81
|
and
|
180.5
|
187
|
6.5
|
1.22
|
APPENDIX 3 - JORC 2012 Table 1 -DFS
Infill Drilling
JORC Table 1 Section 1
Sampling Techniques and Data
Criteria
|
JORC Code
Explanation
|
Commentary
|
Sampling
techniques
|
·
Nature and
quality of sampling (e.g. cut channels, random chips, or specific
specialised industry standard measurement tools appropriate to the
minerals under investigation, such as down hole gamma sondes, or
handheld XRF instruments, etc). These examples should not be taken
as limiting the broad meaning of sampling.
·
Include
reference to measures taken to ensure sample representivity and the
appropriate calibration of any measurement tools or systems
used.
·
Aspects of the
determination of mineralisation that are Material to the Public
Report. In cases where 'industry standard' work has been done this
would be relatively simple (e.g. 'reverse circulation drilling was
used to obtain 1 m samples from which 3 kg was pulverised to
produce a 30 g charge for fire assay'). In other cases more
explanation may be required, such as where there is coarse gold
that has inherent sampling problems. Unusual commodities or
mineralisation types (e.g. submarine nodules) may warrant
disclosure of detailed information.
|
· The
majority of previous holes were reverse circulation, sampled at 1m
intervals. RC samples were collected in large plastic bags attached
to the cyclone. On completion of the 1m run the large sample was
passed through a 3-stage riffle splitter to collect a 2.5-4kg sub
sample, to be used for assay.
· Diamond holes were completed for metallurgical sampling,
geotechnical analysis and resource estimation. Core was PQ/HQ size,
sampled at 1m intervals in the pegmatite, with boundaries sampled
to geological boundaries. Half core samples were collected for
analysis.
· Drilling was carried out to infill previous drilling to
achieve a nominal 40m by 40m spacing with selected infill to 40m by
20m spacings, or as twins of previous RC drilling to get known
samples for metallurgical testing. Geotechnical drilling was
designed purely to intersect planned pit walls and pegmatite
intersections were incidental, but followed all standard logging
and sampling in line with all the drilling.
· Collar
surveys are carried using differential DGPS with an accuracy to
within 0.2m.
· A down
hole survey for each hole was completed using gyro
equipment.
· The
lithium mineralisation is predominantly in the form of
Spodumene-bearing pegmatites, the pegmatites are unzoned and vary
in thickness from 5m-109m.
|
Drilling
techniques
|
·
Drill type (e.g.
core, reverse circulation, open-hole hammer, rotary air blast,
auger, Bangka, sonic, etc) and details (e.g. core diameter, triple
or standard tube, depth of diamond tails, face-sampling bit or
other type, whether core is oriented and if so, by what method,
etc).
|
• RC drilling used a 120mm diameter
face sampling hammer.
· Core
drilling was carried out using an PQ/HQ double tube core
barrels.
· Percussion drilling was carried out using a down hole hammer
with air being passed down through the centre of the string and the
sample travelling up the outside of the drill string.
|
Drill sample
recovery
|
·
Method of
recording and assessing core and chip sample recoveries and results
assessed.
·
Measures taken
to maximise sample recovery and ensure representative nature of the
samples.
·
Whether a
relationship exists between sample recovery and grade and whether
sample bias may have occurred due to preferential loss/gain of
fine/coarse material.
|
· RC
drilling sample weights were monitored to ensure samples were
maximised. Samples were carefully loaded into a splitter and split
in the same manner ensuring that the sample split to be sent to the
assay laboratories were in the range of 4-6kg.
· Core
recovery was measured and was found to be generally
excellent.
· No
obvious relationships between sample recovery and grade.
|
Logging
|
·
Whether core and
chip samples have been geologically and geotechnically logged to a
level of detail to support appropriate Mineral Resource estimation,
mining studies and metallurgical studies.
·
Whether logging
is qualitative or quantitative in nature. Core (or costean,
channel, etc) photography.
·
The total length
and percentage of the relevant intersections
logged.
|
· RC
holes were logged in the field at the time of sampling. Core was
logged in detail for a variety of physical characteristics in a
logging yard away from the drilling.
· Each
1m sample interval was carefully homogenised and assessed for
lithology, colour, grainsize, structure and mineralisation. Core
was sampled to geological boundaries and at 1m intervals
therein.
· A
representative chip sample produced from RC drilling was washed and
taken for each 1m sample and stored in a chip tray which was
photographed.
· Percussion holes were logged for every metre drilled with the
spoil collected for each metre by shovel and placed in a sample
bag, a representative sub sample was taken and logged for
lithology, colour, grainsize and mineralisation.
· Core
was photographed.
|
Sub-sampling techniques and
sample preparation
|
·
If core, whether
cut or sawn and whether quarter, half or all core
taken.
·
If non-core,
whether riffled, tube sampled, rotary split, etc and whether
sampled wet or dry.
·
For all sample
types, the nature, quality and appropriateness of the sample
preparation technique.
·
Quality control
procedures adopted for all sub-sampling stages to maximise
representivity of samples.
·
Measures taken
to ensure that the sampling is representative of the in-situ
material collected, including for instance results for field
duplicate/second-half sampling.
·
Whether sample
sizes are appropriate to the grain size of the material being
sampled.
|
· 1m RC
samples were split by the riffle splitter at the drill rig and
sampled dry.
· Core
was cut in half using a diamond saw with 1m half core samples
submitted for analysis or for metallurgical samples one of the
halves was cut again for a quarter core and sent for
analysis.
· The
sampling was conducted using industry standard techniques and were
considered appropriate.
· Field
duplicates were used to test repeatability of the sub-sampling and
were found to be satisfactory.
· Every
effort was made to ensure that the samples were representative and
not biased in any way.
|
Quality of assay data and
laboratory tests
|
·
The nature,
quality and appropriateness of the assaying and laboratory
procedures used and whether the technique is considered partial or
total.
·
For geophysical
tools, spectrometers, handheld XRF instruments, etc, the parameters
used in determining the analysis including instrument make and
model, reading times, calibrations factors applied and their
derivation, etc.
·
Nature of
quality control procedures adopted (e.g. standards, blanks,
duplicates, external laboratory checks) and whether acceptable
levels of accuracy (i.e. lack of bias) and precision have been
established.
|
· Samples were received, sorted, labelled, and dried.
· Samples were crushed to 70% less than 2mm, riffle split off
250g, pulverise split to better than 85% passing 75 microns and 5g
was split of for assaying.
· The
samples were analysed using ALS Laboratories ME-MS89L Super Trace
method which combines a sodium peroxide fusion with ICP-MS
instrumentation utilising collision/reaction cell technologies to
provide the lowest detection limits available.
· A
prepared sample (0.2g) is added to sodium peroxide flux, mixed well
and then fused in at 670°C. The resulting melt is cooled and then
dissolved in 30% hydrochloric acid. This solution is then analysed
by ICP-MS and the results are corrected for spectral inter-element
interferences.
· The
final solution is then analysed by ICP-MS, with results corrected
for spectral inter-element interferences.
· Standards/blanks and duplicates were inserted on a 1:20 ratio
for both to samples taken.
· Duplicate sample regime is used to monitor sampling
methodology and homogeneity.
· Routine QA/QC controls for the method ME-MS89L include blanks,
certified reference standards of Lithium and duplicate samples.
Samples are assayed within runs or batches up to 40 samples. At the
fusion stage that quality control samples are included together
with the samples, so all samples follow the same procedure until
the end. Fused and diluted samples are prepared for ICP-MS
analysis. ICP instrument is calibrated through appropriate
certified standards solutions and interference corrections to
achieve strict calibration fitting parameters. Each 40-sample run
is assayed with two blanks, two certified standards and one
duplicate sample and results are evaluated accordingly.
· A
QA/QC review of all information indicated that all assays were
satisfactory.
|
Verification of sampling and
assaying
|
·
The verification
of significant intersections by either independent or alternative
company personnel.
·
The use of
twinned holes.
·
Documentation of
primary data, data entry procedures, data verification, data
storage (physical and electronic) protocols.
·
Discuss any
adjustment to assay data.
|
· All
information was internally audited by company personnel.
· During
this programme no holes were twinned.
· Savannah's experienced project geologists supervised all
processes.
· All
field data is entered into a custom log sheet and then into excel
spreadsheets (supported by look-up tables) at site and subsequently
validated as it is imported into the centralised Access
database.
· Hard
copies of logs, survey and sampling data are stored in the local
office and electronic data is stored on the company's cloud
drive.
· Results were reported as Li (ppm) and were converted to a
percentage by dividing by 10,000 and then to Li2O% by
multiplying by 2.153.
|
Location of data
points
|
·
Accuracy and
quality of surveys used to locate drill holes (collar and down-hole
surveys), trenches, mine workings and other locations used in
Mineral Resource estimation.
·
Specification of
the grid system used.
·
Quality and
adequacy of topographic control.
|
· The
coordinate of each drill hole was taken at the time of collecting
using a handheld GPS with an accuracy of 5m. All collars were
subsequently surveyed using DGPS with an accuracy of
0.2m.
· The
grid system used is WSG84 Zone29N.
· An
accurate, aerial topographic survey was obtained with accuracy of
+/- 0.5m.
|
Data spacing and
distribution
|
·
Data spacing for
reporting of Exploration Results.
·
Whether the data
spacing and distribution is sufficient to establish the degree of
geological and grade continuity appropriate for the Mineral
Resource and Ore Reserve estimation procedure(s) and
classifications applied.
·
Whether sample
compositing has been applied.
|
· Drilling was carried out on an infill basis to attain on a
nominal 40m by 40m and based on geological targets with selected
infill to 40m by 20m.
· Drill
data is considered of sufficient spacing to define Measured and
Indicated Mineral Resource in accordance with requirements for a
DFS
· Compositing to 1m will be applied prior to resource
estimation.
|
Orientation of data in
relation to geological structure
|
·
Whether the
orientation of sampling achieves unbiased sampling of possible
structures and the extent to which this is known, considering the
deposit type.
·
If the
relationship between the drilling orientation and the orientation
of key mineralised structures is considered to have introduced a
sampling bias, this should be assessed and reported if
material.
|
· Drilling was generally carried out using angled holes on the
Western Pegmatite at Pinheiro with various azimuths due to limited
access and the holes were generally dipping at
-60° however
limited access due to steep topography in places meant that the
majority of the RC holes were drilled in the same direction as the
dip of the pegmatite and so widths are not truly representative.
The width of the pegmatite is calculated to be between 25m and 40m
based on previous drilling orthogonal to the pegmatite.
· No
orientation-based sampling bias has been identified in the
data.
· At
Reservatório and NOA, the holes were drilled as close to
perpendicular to strike as possible.
· All
Geotech holes were drilled in various orientations to intersect
planned pit walls.
|
Sample
security
|
·
The measures
taken to ensure sample security.
|
· Samples were delivered to a courier and chain of custody is
managed by Savannah.
|
Audits or
reviews
|
·
The results of
any audits or reviews of sampling techniques and
data.
|
· Internal company auditing based on previous programmes is
carried out and an external review will be carried out by the
resource consultant to assure that all data collection and QA/QC
procedures were conducted to industry standards.
|
JORC Table 1 Section 2
Reporting of Exploration Results
Criteria
|
JORC Code
explanation
|
Commentary
|
Mineral tenement and land
tenure status
|
·
Type, reference
name/number, location and ownership including agreements or
material issues with third parties such as joint ventures,
partnerships, overriding royalties, native title interests,
historical sites, wilderness or national park and environmental
settings.
· The security of the tenure
held at the time of reporting along with any known impediments to
obtaining a license to operate in the area.
|
· All
work was completed inside the Mina do Barroso project
C-100.
· Savannah has received written confirmation from the DGEG that
under article 24 of Decree-Law no. 88/90 of March 16 being relevant
justification based on the resources allocated exploited and
intended, Savannah has been approved an expansion up to 250m of
C100 mining concession in specific areas where a resource has been
defined and the requirement for the expansion can be
justified.
|
Exploration done by other
parties
|
·
Acknowledgment
and appraisal of exploration by other parties.
|
· Limited exploration work has been carried out by previous
operators.
· No
historic information has been included in the Mineral Resource
estimates.
|
Geology
|
·
Deposit type,
geological setting and style of mineralisation.
|
·
The lithium mineralisation is predominantly in the
form of Spodumene-bearing pegmatites which are hosted in
meta-pelitic and mica schists, and occasionally carbonate schists
of upper Ordovician to lower Devonian age. The pegmatites vary in
thickness from 5m-109m.
|
Drill hole
information
|
· A summary of all information
material to the under-standing of the exploration results including
a tabulation of the following information for all Material drill
holes:
· easting and northing of the
drill hole collar
· elevation or RL (Reduced
Level - elevation above sea level in metres) of the drill hole
collar
· dip and azimuth of the
hole
· down hole length and
interception depth
· hole
length
· If the exclusion of this
information is justified on the basis that the information is not
Material and this exclusion does not detract from the understanding
of the report, the Competent Person should clearly explain why this
is the case.
|
·
A table containing all drill holes drilled and a
list of significant assays from the results received is included
with the release.
·
No material data has been excluded from the
release.
|
Data aggregation
methods
|
· In reporting Exploration
Results, weighting averaging techniques, maximum and/or minimum
grade truncations (e.g. cutting of high grades) and cut-off grades
are usually Material and should be stated.
· Where aggregate intercepts
incorporate short lengths of high-grade results and longer lengths
of low grade results, the procedure used for such aggregation
should be stated and some typical examples of such aggregations
should be shown in detail.
·
The assumptions
used for any reporting of metal equivalent values should be clearly
stated.
|
·
Length weighted average grades have been
reported.
·
No high-grade cuts have been applied to reported
grades.
·
Metal equivalent values are not being reported;
however, Li is reported as ppm and converted to the oxide
Li2O for resource purposes. The conversion factor used
is to divide the Li value by 10,000 and multiplying by 2.153 to
represent the value as a percentage.
|
Relationship between
mineralisation widths and intercept lengths
|
· These relationships are
particularly important in the reporting of Exploration
Results.
·
If the geometry
of the mineralisation with respect to the drill hole angle is
known, its nature should be reported.
· If it is not known and only
the down hole lengths are reported, there should be a clear
statement to this effect (e.g. 'down hole length, true width not
known').
|
·
The majority of holes have been drilled at angles
to intersect the mineralisation in the same direction as the dip of
the pegmatite, due to access problems.
·
The geometry of the Western Pegmatite at Pinheiro
is moderate dipping to the northwest and most of the holes had to
be drilled at a close angle to the mineralisation in that part of
the deposit.
|
Diagrams
|
· Appropriate maps and
sections (with scales) and tabulations of intercepts should be
included for any significant discovery being reported. These should
include, but not be limited to a plan view of drill hole collar
locations and appropriate sectional views.
|
· A
relevant plan showing the drilling is included within this
release.
|
Balanced
Reporting
|
·
Accuracy and
quality of surveys used to locate drill holes (collar and down-hole
surveys), trenches, mine workings and other locations used in
Mineral Resource estimation.
· Where comprehensive
reporting of all Exploration Results is not practicable,
representative reporting of both low and high grades and/or widths
should be practiced to avoid misleading reporting of Exploration
Results.
|
· All
relevant results available have been previously
reported.
|
Other substantive exploration
data
|
· Other exploration data, if
meaningful and material, should be reported including (but not
limited to): geological observations; geophysical survey results;
geochemical survey results; bulk samples - size and method of
treatment; metallurgical test results; bulk density, groundwater,
geotechnical and rock characteristics; potential deleterious or
contaminating substances.
|
· Geological mapping and rock chip sampling has been conducted
over the project area.
|
Further
work
|
·
The nature and
scale of planned further work (e.g. tests for lateral extensions or
depth extensions or large- scale step-out
drilling).
·
Diagrams clearly
highlighting the areas of possible extensions, including the main
geological interpretations and future drilling areas, provided this
information is not commercially sensitive.
|
·
The present drill programme has been designed to
infill previous drilling to attain a measured or indicated class
for an upcoming resource estimation. Further work is being planned
as part of a second phase of resource infill drilling.
·
Economic evaluation of the defined Mineral
Resources, will be completed after the second phase of
drilling.
|